Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pediatr Infect Dis J ; 43(3): 263-270, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381956

RESUMEN

BACKGROUND: Neonatal colonization with multidrug-resistant (MDR) Enterobacter spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterococcus faecium (ESKAPE) and Candida spp. often precedes invasive hospital-acquired infections. We investigated the prevalence and dynamics of neonatal ESKAPE and Candida spp. colonization from hospital admission until discharge (or death) and followed up for invasive disease. METHODS: Prospective longitudinal surveillance for neonatal ESKAPE and Candida spp. colonization was conducted over 6 months at a South African regional hospital. Neonates enrolled at birth had swabs (nasal, 2× skin and rectal) collected within 24 hours and every 48-96 hours thereafter, until discharge or death. ESKAPE and Candida spp. were cultured for and antimicrobial susceptibility was performed on bacterial isolates. Whole-genome sequencing was undertaken on paired samples with the same bacterial species from colonizing and invasive disease episodes in the same child. RESULTS: Of 102 enrolled neonates, 79% (n = 81) were colonized by ≥1 ESKAPE organism by time of discharge or death. Forty-four percent (36/81) were colonized within 24 hours of birth. Common colonizers were K. pneumoniae (70%; n = 57) and Enterobacter spp. (43%; n = 35). Almost all MDR organisms (93%) were Gram-negative. Forty-two (45%, 42/93) newborns acquired Candida spp. (skin only) colonization, commonly Candida parapsilosis (69%; n = 29). For 2 children with K. pneumoniae colonization and sepsis, the bloodstream and colonizing isolates were genetically different, whereas the single A. baumannii colonizing and blood isolate pair were genetically identical. CONCLUSIONS: We report a high prevalence of MDR ESKAPE and Candida spp. colonization in a regional neonatal unit. Interventions to reduce the high incidence of hospital-acquired neonatal infections should include reducing high colonization rates.


Asunto(s)
Antibacterianos , Candida , Niño , Humanos , Recién Nacido , Antibacterianos/uso terapéutico , Sudáfrica/epidemiología , Candida/genética , Estudios Prospectivos , Bacterias/genética , Klebsiella pneumoniae , Hospitales
2.
Lancet Microbe ; 5(1): e34-e42, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048806

RESUMEN

BACKGROUND: Deployment of non-pharmaceutical interventions such as face masking and physical distancing during the COVID-19 pandemic could have altered the transmission dynamics and carriage of respiratory organisms. We evaluated colonisation with Streptococcus pneumoniae and other upper respiratory tract bacterial colonisers before and during the COVID-19 pandemic. METHODS: We did two cross-sectional surveys in Soweto, South Africa from July 3 to Dec 13, 2018 (pre-COVID-19 period) and from Aug 4, 2021, to March 31, 2022 (COVID-19 period) in healthy children (aged ≤60 months) who had recorded HIV status and had not received antibiotics in the 21 days before enrolment. At enrolment, we collected nasopharyngeal swab samples from child participants. Following nucleic acid extraction, nanofluidic quantitative PCR was used to screen all samples for 92 S pneumoniae serotypes and 14 other bacteria. The primary objective was to compare the prevalence and density of pneumococcal nasopharyngeal colonisation, overall and stratified by 13-valent pneumococcal conjugate vaccine (PCV13) serotypes and non-vaccine serotypes. Secondary study objectives included a comparison of serotype-specific pneumococcal colonisation and density, as well as colonisation by the 14 other bacteria in the COVID-19 versus pre-COVID-19 period. We used an adjusted multiple logistic and linear regression model to compare the colonisation prevalence and density between study periods. FINDINGS: We analysed nasopharyngeal swabs from 1107 children (n=571 in the pre-COVID-19 period; n=536 in the COVID-19 period). We observed no change in overall pneumococcal colonisation between periods (274 [51%] of 536 in the COVID-19 period vs 282 [49%] of 571 in the pre-COVID-19 period; adjusted odds ratio [aOR] 1·03 [95% CI 0·95-1·12]). The prevalence of PCV13 serotypes was lower in the COVID-19 than in the pre-COVID-19 period (72 [13%] vs 106 [19%]; 0·87 [0·78-0·97]), whereas the prevalence of non-typeable S pneumoniae was higher (34 [6%] vs 63 [12%]; 1·30 [1·12-1·50]). The mean log10 density for overall pneumococcal colonisation was lower in the COVID-19 period than in the pre-COVID-19 period (3·96 [95% CI 3·85-4·07] vs 4·72 [4·63-4·80] log10 genome equivalents per mL; p<0·0001). A lower density of non-vaccine serotypes (3·63 [3·51-3·74] vs 4·08 [3·95-4·22] log10 genome equivalents per mL; p<0·0001) and non-typeable S pneumoniae (3·11 [2·94-3·29] vs 4·41 [4·06-4·75] log10 genome equivalents per mL; p<0·00001) was also observed in the COVID-19 period. There was no difference in the density of PCV13 serotypes between the periods. The prevalence of colonisation during the COVID-19 versus pre-COVID-19 period was lower for non-typeable Haemophilus influenzae (280 [49%] vs 165 [31%]; aOR 0·77 [95% CI 0·71-0·84]), Moraxella catarrhalis (328 [57%] vs 242 [45%]; 0·85 [0·79-0·92]), and Neisseria lactamica (51 [9%] vs 13 [2%]; 0·64 [0·52-0·78]), but higher for Acinetobacter baumannii (34 [6%] vs 102 [19%]; 1·55 [1·35-1·77]) and Staphylococcus aureus (29 [5%] vs 52 [10%]; 1·28 [1·10-1·50]). INTERPRETATION: There were variable effects on the colonisation prevalence and density of bacterial organisms during the COVID-19 compared with the pre-COVID-19 period. The lower prevalence of PCV13 serotype together with other respiratory organisms including non-typeable H influenzae and M catarrhalis could have in part contributed to a decrease in all-cause lower respiratory tract infections observed in South Africa during the initial stage of the COVID-19 pandemic. The pathophysiological mechanism for the increase in A baumannii and S aureus colonisation warrants further investigation, as does the clinical relevance of these findings. FUNDING: The Bill & Melinda Gates Foundation.


Asunto(s)
COVID-19 , Pandemias , Niño , Humanos , Sudáfrica/epidemiología , Estudios Transversales , Portador Sano/epidemiología , Portador Sano/microbiología , Portador Sano/prevención & control , COVID-19/epidemiología , Streptococcus pneumoniae , Nasofaringe/microbiología , Moraxella catarrhalis , Haemophilus influenzae , Staphylococcus aureus
3.
Sci Rep ; 13(1): 21332, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049501

RESUMEN

Pneumonia is a major cause of death among adults living with HIV in South Africa, but the etiology of many cases remains unknown. This study evaluated the utility of a nanofluidic qPCR assay to detect and serotype Streptococcus pneumoniae in urine samples from patients hospitalized with community-acquired pneumonia (CAP). The nanofluidic qPCR assay was optimized to target 13 pneumococcal serotypes and 4 reference genes. Archived urine samples collected from patients > 15 years of age hospitalized with pneumonia between April 2018 and August 2019 were retrospectively tested using the nanofluidic qPCR assay, BinaxNOW urine antigen test, and standard LytA qPCR. Blood culture was undertaken on a subset of the samples at the discretion of the attending physician. Cohens' Kappa statistics were used to determine the concordance between the methods. Of the 828 adults hospitalized for CAP, urine samples were available in 53% (n = 439). Of those, a random subset of 96 (22%) samples underwent testing. Of the participants included in the final analysis, the mean age was 45.8 years (SD 16.2), 49% (n = 47) were female, 98% (n = 94) were black, and 66% (n = 63) were living with HIV infection. The nanofluidic qPCR method was able to detect PCV13 vaccine strains spiked into urine samples; however, the method failed to detect any pneumococcus in clinical samples. In comparison, 19% of the pneumonia cases were attributed to S. pneumoniae using urine antigen testing. Nanofluidic qPCR is unable to detect and serotype Streptococcus pneumoniae in urine samples of South Africans hospitalized with CAP.


Asunto(s)
Infecciones Comunitarias Adquiridas , Infecciones por VIH , Neumonía Neumocócica , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Streptococcus pneumoniae/genética , Serogrupo , Sudáfrica/epidemiología , Neumonía Neumocócica/diagnóstico , Estudios Retrospectivos , Infecciones Comunitarias Adquiridas/diagnóstico , Vacunas Neumococicas
4.
Int J Infect Dis ; 134: 45-52, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37209864

RESUMEN

OBJECTIVES: Pneumococcal conjugate vaccines (PCVs) reduce pneumococcal-associated disease by reducing vaccine-serotype (VT) acquisition in vaccinated children, thereby interrupting VT transmission. The 7-valent-PCV was introduced in the South African immunization program in 2009 (13-valent-PCV since 2011) using a 2+1 schedule (at 6, 14, and 40 weeks of age). We aimed to evaluate temporal changes in VT and non-vaccine-serotype (NVT) colonization after 9 years of childhood PCV immunization in South Africa. METHODS: Nasopharyngeal swabs were collected from healthy children <60-month-old (n = 571) in 2018 (period-2) and compared with samples (n = 1135) collected during early PCV7-introduction (period-1, 2010-11) in an urban low-income setting (Soweto). Pneumococci were tested for using a multiplex quantitative-polymerase chain reaction serotyping reaction-set. RESULTS: Overall pneumococcal colonization in period-2 (49.4%; 282/571) was 27.5% lower than period-1 (68.1%; 773/1135; adjusted odds ratio [aOR]: 0.66; 95% confidence interval [CI]: 0.54-0.88). Colonization by VT was reduced by 54.5% in period-2 (18.6%; 106/571) compared with period-1 (40.9%; 465/1135; aOR: 0.41; 95% CI: 0.3-0.56). Nevertheless, serotype 19F carriage prevalence was higher (8.1%; 46/571) in period-2 compared with period-1 (6.6%; 75/1135; aOR: 2.0; 95% CI: 1.09-3.56). NVT colonization prevalence was similar in period-2 and period-1 (37.8%; 216/571 and 42.4%; 481/1135). CONCLUSION: There remains a high residual prevalence of VT, particularly 19F, colonization nine years post-introduction of PCV in the South African childhood immunization program.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Niño , Humanos , Lactante , Preescolar , Vacunas Conjugadas , Sudáfrica/epidemiología , Portador Sano/epidemiología , Portador Sano/microbiología , Vacunas Neumococicas , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/microbiología , Nasofaringe/microbiología , Prevalencia
5.
Lancet Child Adolesc Health ; 7(5): 326-335, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934731

RESUMEN

BACKGROUND: Pneumococcal conjugate vaccine (PCV) immunisation has reduced vaccine-serotype colonisation and invasive pneumococcal disease in South Africa, providing the opportunity to consider transitioning from a two-dose (2 + 1) to one-dose (1 + 1) primary series and a booster dose. METHODS: In this single-centre, open-label, randomised trial done in South Africa, infants aged 35-49 days without HIV infection, without childhood immunisations except for BCG and polio, and with gestation age at delivery of at least 37 weeks of age, a birthweight of at least 2500 g, and weight of at least 3500 g at the time of enrolment were randomly assigned (1:1:1:1:1:1), through block randomisation (block size of 30), to receive a single priming dose of ten-valent PCV (PCV10) or 13-valent PCV (PCV13) at either 6 weeks (6-week 1 + 1 group) or 14 weeks (14-week 1 + 1 group), compared with two priming doses at 6 weeks and 14 weeks (2 + 1 group), followed by a booster dose at 9 months of age in all groups. The primary objective of the trial has been published previously. We report the secondary objective of the effect of alternative doses of PCV10 and PCV13 on serotype-specific Streptococcus pneumoniae colonisation at 9 months, 15 months, and 18 months of age and a further exploratory analysis in which we assessed non-inferiority of serotype-specific serum IgG geometric mean concentrations 1 month after the booster (10 months of age) and the percentage of participants with serotype-specific IgG titre above the putative thresholds associated with a risk reduction of serotype-specific colonisation between the 1 + 1 and 2 + 1 groups for both vaccines. Non-inferiority was established if the lower limit of the 95% CI for the difference between the proportion of participants (1 + 1 group vs 2 + 1 group) above the putative thresholds was greater than or equal to -10%. All analyses were done in the modified intention-to-treat population, which included all participants who received PCV10 or PCV13 according to assigned randomisation group and for whom laboratory results were available. The trial is registered with ClinicalTrials.gov, NCT02943902. FINDINGS: 1564 nasopharyngeal swabs were available for molecular serotyping from 600 infants who were enrolled (100 were randomly assigned to each of the six study groups) between Jan 9 and Sept 20, 2017. There was no significant difference in the prevalence of overall or non-vaccine serotype colonisation between all PCV13 or PCV10 groups. PCV13 serotype colonisation was lower at 15 months of age in the 14-week 1 + 1 group than in the 2 + 1 group (seven [8%] of 85 vs 17 [20%] of 87; odds ratio 0·61 [95% CI 0·38-0·97], p=0·037), but no difference was seen at 9 months (nine [11%] of 86 vs ten [11%] of 89; 0·92 [0·60-1·55], p=0·87) or 18 months (nine [11%] of 85 vs 11 [14%] of 87; 0·78 [0·45-1·22], p=0·61). Compared with the PCV13 2 + 1 group, both PCV13 1 + 1 groups did not meet the non-inferiority criteria for serotype-specific anti-capsular antibody concentrations above the putative thresholds purportedly associated with risk reduction for colonisation; however, the PCV10 14-week 1 + 1 group was non-inferior to the PCV10 2 + 1 group. INTERPRETATION: The serotype-specific colonisation data reported in this study together with the primary immunogenicity endpoints of the control trial support transitioning to a reduced 1 + 1 schedule in South Africa. Ongoing monitoring of colonisation should, however, be undertaken immediately before and after transitioning to a PCV 1 + 1 schedule to serve as an early indicator of whether PCV 1 + 1 could lead to an increase in vaccine-serotype disease. FUNDING: The Bill & Melinda Gates Foundation.


Asunto(s)
Infecciones por VIH , Streptococcus pneumoniae , Lactante , Humanos , Niño , Sudáfrica/epidemiología , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Antibacterianos/farmacología , Vacunas Conjugadas , Inmunoglobulina G
6.
Sci Rep ; 13(1): 4588, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944704

RESUMEN

Sensitive tools for detecting concurrent colonizing pneumococcal serotypes are needed for detailed evaluation of the direct and indirect impact of routine pneumococcal conjugate vaccine (PCV) immunization. A high-throughput quantitative nanofluidic real-time PCR (Standard BioTools 'Fluidigm') reaction-set was developed to detect and quantify 92 pneumococcal serotypes in archived clinical samples. Nasopharyngeal swabs collected in 2009-2011 from South African children ≤ 5 years-old, previously serotyped with standard culture-based methods were used for comparison. The reaction-set within the 'Fluidigm' effectively amplified all targets with high efficiency (90-110%), reproducibility (R2 ≥ 0.98), and at low limit-of-detection (< 102 CFU/ml). A blind analysis of 1 973 nasopharyngeal swab samples showed diagnostic sensitivity > 80% and specificity > 95% compared with the referent standard, culture based Quellung method. The qPCR method was able to serotype pneumococcal types with good discrimination compared with Quellung (ROC-AUC: > 0.73). The high-throughput nanofluidic real-time PCR method simultaneously detects 57 individual serotypes, and 35 serotypes within 16 serogroups in 96 samples (including controls), within a single qPCR run. This method can be used to evaluate the impact of current PCV formulations on vaccine-serotype and non-vaccine-serotype colonization, including detection of multiple concurrently colonizing serotypes. Our qPCR method can allow for monitoring of serotype-specific bacterial load, as well as emergence or ongoing transmission of minor or co-colonizing serotypes that may have invasive disease potential.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Niño , Humanos , Lactante , Preescolar , Streptococcus pneumoniae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones Neumocócicas/diagnóstico , Infecciones Neumocócicas/prevención & control , Serogrupo , Reproducibilidad de los Resultados , Serotipificación/métodos , Nasofaringe/microbiología , Vacunas Neumococicas , Vacunas Conjugadas , Portador Sano/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...